站長(zhǎng)資訊網(wǎng)
        最全最豐富的資訊網(wǎng)站

        迅速掌握Python中的Hook鉤子函數(shù)

        Python教程欄目介紹Python中的Hook鉤子函數(shù)

        迅速掌握Python中的Hook鉤子函數(shù)

        大量免費(fèi)學(xué)習(xí)推薦,敬請(qǐng)?jiān)L問(wèn)python教程(視頻)

        1. 什么是Hook

        經(jīng)常會(huì)聽(tīng)到鉤子函數(shù)(hook function)這個(gè)概念,最近在看目標(biāo)檢測(cè)開(kāi)源框架mmdetection,里面也出現(xiàn)大量Hook的編程方式,那到底什么是hook?hook的作用是什么?

        • what is hook ?鉤子hook,顧名思義,可以理解是一個(gè)掛鉤,作用是有需要的時(shí)候掛一個(gè)東西上去。具體的解釋是:鉤子函數(shù)是把我們自己實(shí)現(xiàn)的hook函數(shù)在某一時(shí)刻掛接到目標(biāo)掛載點(diǎn)上。

        • hook函數(shù)的作用 舉個(gè)例子,hook的概念在windows桌面軟件開(kāi)發(fā)很常見(jiàn),特別是各種事件觸發(fā)的機(jī)制; 比如C++的MFC程序中,要監(jiān)聽(tīng)鼠標(biāo)左鍵按下的時(shí)間,MFC提供了一個(gè)onLeftKeyDown的鉤子函數(shù)。很顯然,MFC框架并沒(méi)有為我們實(shí)現(xiàn)onLeftKeyDown具體的操作,只是為我們提供一個(gè)鉤子,當(dāng)我們需要處理的時(shí)候,只要去重寫(xiě)這個(gè)函數(shù),把我們需要操作掛載在這個(gè)鉤子里,如果我們不掛載,MFC事件觸發(fā)機(jī)制中執(zhí)行的就是空的操作。

        從上面可知

        • hook函數(shù)是程序中預(yù)定義好的函數(shù),這個(gè)函數(shù)處于原有程序流程當(dāng)中(暴露一個(gè)鉤子出來(lái))

        • 我們需要再在有流程中鉤子定義的函數(shù)塊中實(shí)現(xiàn)某個(gè)具體的細(xì)節(jié),需要把我們的實(shí)現(xiàn),掛接或者注冊(cè)(register)到鉤子里,使得hook函數(shù)對(duì)目標(biāo)可用

        • hook 是一種編程機(jī)制,和具體的語(yǔ)言沒(méi)有直接的關(guān)系

        • 如果從設(shè)計(jì)模式上看,hook模式是模板方法的擴(kuò)展

        • 鉤子只有注冊(cè)的時(shí)候,才會(huì)使用,所以原有程序的流程中,沒(méi)有注冊(cè)或掛載時(shí),執(zhí)行的是空(即沒(méi)有執(zhí)行任何操作)

        本文用python來(lái)解釋hook的實(shí)現(xiàn)方式,并展示在開(kāi)源項(xiàng)目中hook的應(yīng)用案例。hook函數(shù)和我們常聽(tīng)到另外一個(gè)名稱:回調(diào)函數(shù)(callback function)功能是類似的,可以按照同種模式來(lái)理解。

        迅速掌握Python中的Hook鉤子函數(shù)

        2. hook實(shí)現(xiàn)例子

        據(jù)我所知,hook函數(shù)最常使用在某種流程處理當(dāng)中。這個(gè)流程往往有很多步驟。hook函數(shù)常常掛載在這些步驟中,為增加額外的一些操作,提供靈活性。

        下面舉一個(gè)簡(jiǎn)單的例子,這個(gè)例子的目的是實(shí)現(xiàn)一個(gè)通用往隊(duì)列中插入內(nèi)容的功能。流程步驟有2個(gè)

        • 需要再插入隊(duì)列前,對(duì)數(shù)據(jù)進(jìn)行篩選 input_filter_fn

        • 插入隊(duì)列 insert_queue

        class ContentStash(object):     """     content stash for online operation     pipeline is     1. input_filter: filter some contents, no use to user     2. insert_queue(redis or other broker): insert useful content to queue     """      def __init__(self):         self.input_filter_fn = None         self.broker = []      def register_input_filter_hook(self, input_filter_fn):         """         register input filter function, parameter is content dict         Args:             input_filter_fn: input filter function          Returns:          """         self.input_filter_fn = input_filter_fn      def insert_queue(self, content):         """         insert content to queue         Args:             content: dict          Returns:          """         self.broker.append(content)      def input_pipeline(self, content, use=False):         """         pipeline of input for content stash         Args:             use: is use, defaul False             content: dict          Returns:          """         if not use:             return          # input filter         if self.input_filter_fn:             _filter = self.input_filter_fn(content)                      # insert to queue         if not _filter:             self.insert_queue(content)    # test ## 實(shí)現(xiàn)一個(gè)你所需要的鉤子實(shí)現(xiàn):比如如果content 包含time就過(guò)濾掉,否則插入隊(duì)列 def input_filter_hook(content):     """     test input filter hook     Args:         content: dict      Returns: None or content      """     if content.get('time') is None:         return     else:         return content   # 原有程序 content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}} content_stash = ContentStash('audit', work_dir='')  # 掛上鉤子函數(shù), 可以有各種不同鉤子函數(shù)的實(shí)現(xiàn),但是要主要函數(shù)輸入輸出必須保持原有程序中一致,比如這里是content content_stash.register_input_filter_hook(input_filter_hook)  # 執(zhí)行流程 content_stash.input_pipeline(content)

        3. hook在開(kāi)源框架中的應(yīng)用

        3.1 keras

        在深度學(xué)習(xí)訓(xùn)練流程中,hook函數(shù)體現(xiàn)的淋漓盡致。

        一個(gè)訓(xùn)練過(guò)程(不包括數(shù)據(jù)準(zhǔn)備),會(huì)輪詢多次訓(xùn)練集,每次稱為一個(gè)epoch,每個(gè)epoch又分為多個(gè)batch來(lái)訓(xùn)練。流程先后拆解成:

        • 開(kāi)始訓(xùn)練

        • 訓(xùn)練一個(gè)epoch前

        • 訓(xùn)練一個(gè)batch前

        • 訓(xùn)練一個(gè)batch后

        • 訓(xùn)練一個(gè)epoch后

        • 評(píng)估驗(yàn)證集

        • 結(jié)束訓(xùn)練

        這些步驟是穿插在訓(xùn)練一個(gè)batch數(shù)據(jù)的過(guò)程中,這些可以理解成是鉤子函數(shù),我們可能需要在這些鉤子函數(shù)中實(shí)現(xiàn)一些定制化的東西,比如在訓(xùn)練一個(gè)epoch后我們要保存下訓(xùn)練的模型,在結(jié)束訓(xùn)練時(shí)用最好的模型執(zhí)行下測(cè)試集的效果等等。

        keras中是通過(guò)各種回調(diào)函數(shù)來(lái)實(shí)現(xiàn)鉤子hook功能的。這里放一個(gè)callback的父類,定制時(shí)只要繼承這個(gè)父類,實(shí)現(xiàn)你過(guò)關(guān)注的鉤子就可以了。

        @keras_export('keras.callbacks.Callback') class Callback(object):   """Abstract base class used to build new callbacks.    Attributes:       params: Dict. Training parameters           (eg. verbosity, batch size, number of epochs...).       model: Instance of `keras.models.Model`.           Reference of the model being trained.    The `logs` dictionary that callback methods   take as argument will contain keys for quantities relevant to   the current batch or epoch (see method-specific docstrings).   """    def __init__(self):     self.validation_data = None  # pylint: disable=g-missing-from-attributes     self.model = None     # Whether this Callback should only run on the chief worker in a     # Multi-Worker setting.     # TODO(omalleyt): Make this attr public once solution is stable.     self._chief_worker_only = None     self._supports_tf_logs = False    def set_params(self, params):     self.params = params    def set_model(self, model):     self.model = model    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_batch_begin(self, batch, logs=None):     """A backwards compatibility alias for `on_train_batch_begin`."""    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_batch_end(self, batch, logs=None):     """A backwards compatibility alias for `on_train_batch_end`."""    @doc_controls.for_subclass_implementers   def on_epoch_begin(self, epoch, logs=None):     """Called at the start of an epoch.      Subclasses should override for any actions to run. This function should only     be called during TRAIN mode.      Arguments:         epoch: Integer, index of epoch.         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_epoch_end(self, epoch, logs=None):     """Called at the end of an epoch.      Subclasses should override for any actions to run. This function should only     be called during TRAIN mode.      Arguments:         epoch: Integer, index of epoch.         logs: Dict, metric results for this training epoch, and for the           validation epoch if validation is performed. Validation result keys           are prefixed with `val_`.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_train_batch_begin(self, batch, logs=None):     """Called at the beginning of a training batch in `fit` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.train_step`. Typically,           the values of the `Model`'s metrics are returned.  Example:           `{'loss': 0.2, 'accuracy': 0.7}`.     """     # For backwards compatibility.     self.on_batch_begin(batch, logs=logs)    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_train_batch_end(self, batch, logs=None):     """Called at the end of a training batch in `fit` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """     # For backwards compatibility.     self.on_batch_end(batch, logs=logs)    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_test_batch_begin(self, batch, logs=None):     """Called at the beginning of a batch in `evaluate` methods.      Also called at the beginning of a validation batch in the `fit`     methods, if validation data is provided.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.test_step`. Typically,           the values of the `Model`'s metrics are returned.  Example:           `{'loss': 0.2, 'accuracy': 0.7}`.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_test_batch_end(self, batch, logs=None):     """Called at the end of a batch in `evaluate` methods.      Also called at the end of a validation batch in the `fit`     methods, if validation data is provided.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_predict_batch_begin(self, batch, logs=None):     """Called at the beginning of a batch in `predict` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict, contains the return value of `model.predict_step`,           it typically returns a dict with a key 'outputs' containing           the model's outputs.     """    @doc_controls.for_subclass_implementers   @generic_utils.default   def on_predict_batch_end(self, batch, logs=None):     """Called at the end of a batch in `predict` methods.      Subclasses should override for any actions to run.      Arguments:         batch: Integer, index of batch within the current epoch.         logs: Dict. Aggregated metric results up until this batch.     """    @doc_controls.for_subclass_implementers   def on_train_begin(self, logs=None):     """Called at the beginning of training.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_train_end(self, logs=None):     """Called at the end of training.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently the output of the last call to `on_epoch_end()`           is passed to this argument for this method but that may change in           the future.     """    @doc_controls.for_subclass_implementers   def on_test_begin(self, logs=None):     """Called at the beginning of evaluation or validation.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_test_end(self, logs=None):     """Called at the end of evaluation or validation.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently the output of the last call to           `on_test_batch_end()` is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_predict_begin(self, logs=None):     """Called at the beginning of prediction.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    @doc_controls.for_subclass_implementers   def on_predict_end(self, logs=None):     """Called at the end of prediction.      Subclasses should override for any actions to run.      Arguments:         logs: Dict. Currently no data is passed to this argument for this method           but that may change in the future.     """    def _implements_train_batch_hooks(self):     """Determines if this Callback should be called for each train batch."""     return (not generic_utils.is_default(self.on_batch_begin) or             not generic_utils.is_default(self.on_batch_end) or             not generic_utils.is_default(self.on_train_batch_begin) or             not generic_utils.is_default(self.on_train_batch_end))

        這些鉤子的原始程序是在模型訓(xùn)練流程中的

        keras源碼位置: tensorflowpythonkerasenginetraining.py

        部分摘錄如下(## I am hook):

        # Container that configures and calls `tf.keras.Callback`s.       if not isinstance(callbacks, callbacks_module.CallbackList):         callbacks = callbacks_module.CallbackList(             callbacks,             add_history=True,             add_progbar=verbose != 0,             model=self,             verbose=verbose,             epochs=epochs,             steps=data_handler.inferred_steps)        ## I am hook       callbacks.on_train_begin()       training_logs = None       # Handle fault-tolerance for multi-worker.       # TODO(omalleyt): Fix the ordering issues that mean this has to       # happen after `callbacks.on_train_begin`.       data_handler._initial_epoch = (  # pylint: disable=protected-access           self._maybe_load_initial_epoch_from_ckpt(initial_epoch))       for epoch, iterator in data_handler.enumerate_epochs():         self.reset_metrics()         callbacks.on_epoch_begin(epoch)         with data_handler.catch_stop_iteration():           for step in data_handler.steps():             with trace.Trace(                 'TraceContext',                 graph_type='train',                 epoch_num=epoch,                 step_num=step,                 batch_size=batch_size):               ## I am hook               callbacks.on_train_batch_begin(step)               tmp_logs = train_function(iterator)               if data_handler.should_sync:                 context.async_wait()               logs = tmp_logs  # No error, now safe to assign to logs.               end_step = step + data_handler.step_increment               callbacks.on_train_batch_end(end_step, logs)         epoch_logs = copy.copy(logs)          # Run validation.          ## I am hook         callbacks.on_epoch_end(epoch, epoch_logs)

        3.2 mmdetection

        mmdetection是一個(gè)目標(biāo)檢測(cè)的開(kāi)源框架,集成了許多不同的目標(biāo)檢測(cè)深度學(xué)習(xí)算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露給應(yīng)用實(shí)現(xiàn)流程中具體部分。

        詳見(jiàn)https://github.com/open-mmlab/mmdetection

        這里看一個(gè)訓(xùn)練的調(diào)用例子(摘錄)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

        def train_detector(model,                    dataset,                    cfg,                    distributed=False,                    validate=False,                    timestamp=None,                    meta=None):     logger = get_root_logger(cfg.log_level)      # prepare data loaders      # put model on gpus      # build runner     optimizer = build_optimizer(model, cfg.optimizer)     runner = EpochBasedRunner(         model,         optimizer=optimizer,         work_dir=cfg.work_dir,         logger=logger,         meta=meta)     # an ugly workaround to make .log and .log.json filenames the same     runner.timestamp = timestamp      # fp16 setting     # register hooks     runner.register_training_hooks(cfg.lr_config, optimizer_config,                                    cfg.checkpoint_config, cfg.log_config,                                    cfg.get('momentum_config', None))     if distributed:         runner.register_hook(DistSamplerSeedHook())      # register eval hooks     if validate:         # Support batch_size > 1 in validation         eval_cfg = cfg.get('evaluation', {})         eval_hook = DistEvalHook if distributed else EvalHook         runner.register_hook(eval_hook(val_dataloader, **eval_cfg))      # user-defined hooks     if cfg.get('custom_hooks', None):         custom_hooks = cfg.custom_hooks         assert isinstance(custom_hooks, list),              f'custom_hooks expect list type, but got {type(custom_hooks)}'         for hook_cfg in cfg.custom_hooks:             assert isinstance(hook_cfg, dict),                  'Each item in custom_hooks expects dict type, but got '                  f'{type(hook_cfg)}'             hook_cfg = hook_cfg.copy()             priority = hook_cfg.pop('priority', 'NORMAL')             hook = build_from_cfg(hook_cfg, HOOKS)             runner.register_hook(hook, priority=priority)

        4. 總結(jié)

        本文介紹了hook的概念和應(yīng)用,并給出了python的實(shí)現(xiàn)細(xì)則。希望對(duì)比有幫助。總結(jié)如下:

        • hook函數(shù)是流程中預(yù)定義好的一個(gè)步驟,沒(méi)有實(shí)現(xiàn)

        • 掛載或者注冊(cè)時(shí), 流程執(zhí)行就會(huì)執(zhí)行這個(gè)鉤子函數(shù)

        • 回調(diào)函數(shù)和hook函數(shù)功能上是一致的

        • hook設(shè)計(jì)方式帶來(lái)靈活性,如果流程中有一個(gè)步驟,你想讓調(diào)用方來(lái)實(shí)現(xiàn),你可以用hook函數(shù)

        相關(guān)免費(fèi)學(xué)習(xí)推薦:php編程(視頻)

        贊(0)
        分享到: 更多 (0)
        網(wǎng)站地圖   滬ICP備18035694號(hào)-2    滬公網(wǎng)安備31011702889846號(hào)
        主站蜘蛛池模板: 亚洲国产精品va在线播放| 久久精品人人做人人爽97 | 亚洲AV无码成人网站久久精品大| 亚洲精品小视频| 人妻少妇精品无码专区二区| 久久精品一区二区三区中文字幕 | 一本一本久久a久久精品综合麻豆| 9999国产精品欧美久久久久久| 国产精品多人p群无码| 亚洲精品亚洲人成人网| 免费精品视频在线| 国产亚洲精品精品国产亚洲综合 | 精品久久777| www.亚洲精品.com| 国产麻豆一精品一AV一免费| 无码国产精品一区二区免费模式 | 精品无码久久久久久久久久| 91亚洲精品自在在线观看| 国产精品天天影视久久综合网| 久久久精品国产sm调教网站| 在线精品动漫一区二区无广告| 久久成人国产精品一区二区 | 久久久久夜夜夜精品国产| 2022精品天堂在线视频| 精品无码人妻一区二区三区| 一本色道久久综合亚洲精品| 最新欧美性爱精品一区二区三区 | 2021最新国产精品网站| 国内精品伊人久久久久av一坑| 精品无码日韩一区二区三区不卡 | 四虎国产精品永久地址入口| 日本熟妇亚洲欧美精品区| 人妻少妇精品系列| 无码国内精品久久人妻麻豆按摩| 日本精品一区二区三区四区| 西瓜精品国产自在现线| 在线亚洲精品福利网址导航| 亚洲精品乱码久久久久久不卡| 在线精品亚洲一区二区三区| 久久99热只有频精品8| 国产精品无码无片在线观看|